PSYCHONEUROIMMUNOLOGY

Evidence for Nervous – Immune system Interactions

- Expression of receptors on immune cells.
- Autonomic nervous system and the lymphoid tissue.
- Conditioning of the immune response.
- Stress affects the immune response.
- Immune system affects neurotransmitter function, receptor density, regional brain blood flow and behavior.

Neurotransmitters involved

- Nor-epinephrine.
- Serotonin.
- Opioids.
- Substance P.
- ACTH
- CRH.
- VIP.
- MSH.

- Dopamine.
- Acetylcholine.
- Histamine.
- AVP.
- Oxytocin.
- Neuropeptide Y
- Somatostatin.
- IGF-1

CANCER

Chemical dynamics of Psychoneuroimmunology

- Robert Ader 1970
- Father of psychoneuroimmunology.

History

1964 coined the term **"psychoimmunology"**

published a landmark paper: "Emotions, immunity, and disease: a speculative theoretical integration." Freeman et al., Phillips et al., Vaughan et al. - mid XXth century studies of psychiatric patients:

→ immune alterations in **psychotic patients**, including numbers of lymphocytes and poorer antibody response to pertussis vaccination, compared with **non-psychiatric control subjects**

Freeman H, Elmadjian F. The relationship between blood sugar and lymphocyte levels in normal and psychotic subjects. Psychosom Med 1947; 9: 226–33. Phillips L, Elmadjian F. A Rorschach tension score and the diurnal lymphocyte curve in psychotic subjects. Psychosom Med 1947; 9: 364–71 Vaughan WTJ, Sul livan JC, Elmadjian F. Immunity and schizophrenia. Psychosom Med 1949; 11: 327–33.

Ader - Cohen - Felten

authors of book **Psychoneuroimmunology** 1981

underlying premise that

the brain and immune system represent a single, integrated system of defense.

Psychoneuroimmunology

Publicad.	Channel III) psychiatra contraveuralogy	
Documents and	Disales Softings: - Korntay, 20 per page, Sotal by Recently Added	
Antoine Spanne Climited Triat	Results: 1 to 20 of 1261	

- Google search
 349 000 results in 0,37 sec
- Pubmed 1261 articles
- the last decade the no. of scientific papers using the term 'PSYCHONEUROIMMUNOLOGY' has more than doubled.

Naming of Cytokines

- 1. Monokines produced by mononuclear phagocytes (monocytes)
- 2. Lymphokines produced by activated T cells, primarily helper T cells
- 3. Interleukins cytokines made by one leukocyte and acting on other leukocytes 4. Chemokines-cytokines with chemotactic activities

Negative States

Bereavement	Decreased lymphocyte proliferation.
Pessimistic states	Decreased lymphocyte reactivity; decreased T-cell effectiveness.
Academic stress	Decreased NK cell activity; decreased T-cells; decrease in certain immune chemicals; increased susceptibility to herpes virus; decreased immunoglobulin A; increased blood levels of Epstein-Barr virus.
Depression	Decreased T-cells; decreased number and function of lymphocytes; decreased NK cells.
Loneliness	Decreased NK (Natural Killer Cell) activity.
Chronic stress	Decreased T-cells; decreased NK cells; decreased B-cells; increased levels of Epstein-Barr virus.
Divorce/separation poor marital quality	Decreased lymphocyte function; increased blood levels of Epstein-Barr virus; decreased T-cell effectiveness.
Expressed need for power and control	Decreased NK activity; decreased lymphocytes.
Negative behavior	Decreased NK activity; decreased macrophages;

Negative behavior during discussions of marital problems Decreased NK activity; decreased macrophages; increased blood levels of Epstein-Barr virus; increase in certain T-cells; decreased immunity by mitogen tests.

Cytokine	Cell source	Target	Actions				
Proinflammatory Cytokines							
IL-1	Macrophage Dendritic cell	Lymphocytes Endothelial cell CNS Liver	Enhances responses Activates Fever, sickness behavior Synthesis and release of acute- phase proteins				
IL-6	Macrophage Dendritic cell Endothelium Th2 cell	Liver B cell	Synthesis and release of acute- phase proteins Proliferation				
TNF-alpha	Macrophage Dendritic cell Th1 cell	Endothelial cell Neutrophil Hypothalamus Liver	Activates vascular endothelium – increased permeability and stimulates adhesion molecules Activates Fever Synthesis and release of acute- phase proteins				
Anti-inflammatory Cytokines							
IL-10	Macrophage Th2	Macrophage Dendritic cell	Inhibits IL-12 production Inhibits pro-inflammatory cytokine synthesis				
II-12	Macrophage Dendritic cell	CD4+T helper cell NK cell	Th1 differentiation IFN-gamma synthesis				
	olved in the Acqu	<u>ired Immune Res</u>					
IL-2	T cell	T cell NK Cell B cell	Proliferation Activation and proliferation Proliferation				
IL-4	Th2 cell Mast cell	T cell B cell Macrophage	Th2 cell development/proliferation Isotype switch to IgE Inhibit IFN-gamma activation				
IFN-gamma	Th1 cell Cytotoxic T cell NK cell	T cell B cell Macrophage	Th1 cell development Isotype switch to IgG Activation				

Fig 7. Role of proinflammatory cytokines in degenerative diseases and aging.

Neurodegeneration Hypothesis of Depression

CNS=central nervous system; HPA=hypothalamic pituitary adrenal axis; CV=cardiovascular.

Goddard ER, Barth KS, Lydiard RB. Primary Psychiatry. Vol 14, No 4. 2007.

Some affects of the inflammatory cytokines on neural function and pathology

Effect	Cytokine	Reference
oligodenthocyte cytotoxicity and demyelination	TNF-0.	Selmaj et al.(1991)
increased neurite outgrowth and decreased neuronal cell survival	IL-6	Alstiel and Sperber (1991)
stimulation of the synthesis of the β -amyloid precursor protein	IL-1, IL-6	Goldgaber et al. (1989), Alstiel and Sperber (1991)
debisions, halbicinations, paranoia, agitation, anorexia, fatigue and severe cognitive charges	IL-2	Denicoff et al. (1987)
astrocyte proliferation	TNF-C, IL-6	Barna et al. (1990), Selmaj et al. (1990)
reduction of extracellul ar acetylcholine in the hippocampus	IL-1β	Rada et al. (1991)
increases the secretion of glucocorticoids via the HPA axis	IL-1, IL-2, IL-6, TNF-2	Hennus and Sweep (1990)

Tissue damage including loss of tolerance/ecology

Stress

Activation of Innate Immune Response

- Innate immune cytokines
- Acute phase proteins
- Chemokines

Infection

Adhesion molecules

Neuroendocrine Function Monoamine Metabolism Synaptic Plasticity Regional Brain Activity

Atypical Depression

Activation of Innate Immune Responses and Atypical Depression

Fibromyalgia Cytokine Hypothesis

Increased CRH activity

Figure 1

Interaction between the immune system and schizophrenia

Different immune reactions directly influence neuronal proliferation, differentiation, migration, and apoptosis. Microglia become activated after stress, trauma, or infection. They react with tissue repair or induction of immune responses: phagocytosis, secretion of cytokines, neuronal growth factors, and antigen presentation. Microglial activation may sustain chronic brain inflammation.² NK, natural killer.

Source: Int J Clin Pract @ 2007 Blackwell Publishing Ltd.

General Model

Etiology: Multiple convergent factors (e.g., DNA, gene expression, viruses, toxins, nutrition, birth injury, psychological experiences)

+

Pathophysiology: Brain development from conception to early adulthood

(e.g., neuron formation, migration, synaptogenesis, pruning, apoptosis, activity dependent changes)

+

Anatomic and functional disruption in neural connectivity and communication

┿

Impairment in a fundamental cognitive process

₽

Phenomenology: Impairment in one or more secondorder cognitive processes

(e.g., attention, memory, language, emotion)

┿

Phenomenology: Symptoms of schizophrenia (e.g., hallucinations, delusions, negative symptoms, disorganized speech)

THE ANATOMY OF AUTISM

People with autism show reduced mirror neuron activity in the inferior frontal gyrus, a part of the brain's premotor cortex, perhaps explaining their inability to assess the intentions of others. Dysfunctions of mirror neurons in the insula and anterior cingulate cortex may cause related symptoms, such as the absence of empathy, and deficits in the angular gyrus may result in language difficulties. People with autism also have structural changes in the cerebellum and brain stem.

Plausible Paths for Ethyl Mercury Toxicity

Aposhian

**Hypersusceptibility?

76

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Key role of central memory (CM) CD4+ T cells cells in HIV pathogenesis: The differentiation of CM to effector memory CD4+ T cells is accelerated in viremic patients, leading to the exhaustion of the CM pool. In contrast, CM CD4+ T cells are preserved in HIV controllers, allowing the persistence of an efficient antiviral response in the long term.

Metabolic Syndrome Cytokine Imbalance

TNF Pro-inflammatory

- Pro-apoptotic
- Recruits WBC's
- Promotes insulin resistance

Adiponectin Anti-inflammatory

- Inhibits FA uptake
- Stimulates FA oxidation & lipid export
- Enhances insulin sensitivity

Steatosis (NAFL) + cell death + inflammation (NASH) & insulin resistance

Medscape® www.medscape.com

Medscape

Proposed Mechanism of Interferon and Ribavirin on Liver Injury In Chronic HCV Infection

Davis GL. Semin Liver Dis. 1999;19(suppl 1):49-55. Reprinted with permission.

Ambiguous

Nature Reviews | Neuroscience

Critical Care

The Neuroinflammatory Cycle as a Therapeutic Target

Pro-inflammatory cytokines: IL-1β, S100B, TNFα; Aβ= beta-amyloid1-42 peptide; PKs = protein kinases; iNOS= inducible nitric oxide synthase; NO= nitric oxide

Psychoneuroimmunology

Gregory G. Freund, MD

IMMUNOLOGY AND ALLERGY CUINICS OF NORTH AMERICA

Patent Alam, MD, PhD

The Psychoneuroimmunology of Chronic Disease

Exploring the Links Between Inflammation, Stress, and Illness

Edited by Kathleen Kendall-Tackett

topmedicalbooks.com

The Oxford Handbook of PSYCHO-NEURO-IMMUNOLOGY

Impact Factor Now 4.659

Thank you avinashdes888@gmail.com 9820696828