

THE INFLAMMATION HYPOTHESIS OF MAJOR DEPRESSION: THIRTY YEARS OF PROGRESS FROM THE BENCH TO CLINIC

Dr Vikas Menon Additional Professor of Psychiatry JIPMER, Puducherry

DY Patil Psychiatry Knowledge Series 01.10.2020

Overview of presentation

- Brief historical overview
- Evidence base for inflammation in depression
- * Mechanistic pathways explaining the association
- Translational implications
- Evidence for anti-inflammatory treatments in MDD
- An integrated approach to practice

Introduction

Introduction

Functions - Brain development, neuronal integrity, neurogenesis, and synaptic remodelling

Evidence for a contributory role in pathobiology of major mental illness

(Felger and Lotrich., 2013)

Evidence base for immuno-inflammation in major depression

Levels of Evidence for immuno-inflammation in depression

Evidence for immuno-inflammation in depression

Level of evidence Research findings Molecular \uparrow expression and polymorphisms of immune-related genes (IL-1, TNFalpha, and CRP) Activation of intracellular pathways (MAPK and NF-kB) ↑ activated sensors (TLRs and inflammasome)

Evidence for immuno- inflammation in depression

Level of evidence	Research findings
Peripheral blood	
	• 个 endothelial cell activation markers
	 个 adipokines
	• 个 acute phase proteins (e.g., CRP)
	• 个 oxidative stress markers

Evidence for immuno-inflammation in depression

Level of evidence Research findings

CNS

Evidence for immuno-inflammation in depression

Level of evidence	Research findings
Clinical	 ↑ prevalence of autoimmune diseases ↑ prevalence of diseases with a proinflammatory status 'Depressogenic' effects of immunotherapy with cytokines such as interferon alpha

Evidence for inflammation in depression

A Meta-Analysis of Cytokines in Major Depression

Yekta Dowlati, Nathan Herrmann, Walter Swardfager, Helena Liu, Lauren Sham, Elyse K. Reim, and Krista L. Lanctôt

24 studies (pooled N > 1200) 8 cytokines analysed TNF α (WMD – 3.97pg/ml) and IL-6 (WMD – 1.78pg/ml) higher in MDD subjects vs controls

Is Depression an Inflammatory Disease? Findings from a Cross-sectional Study at a Tertiary Care Center

BIOL PSYCHIATRY 2010;67:446-457

Indian J Psychol Med 2016;38:114-9.

Avin Muthuramalingam, Vikas Menon, Ravi Philip Rajkumar, Vir Singh Negi¹

Significantly raised levels of TNF α and IL-6 but not TGF β

Evidence for inflammation in depression

Original Investigation

Association of Serum Interleukin 6 and C-Reactive Protein in Childhood With Depression and Psychosis in Young Adult Life A Population-Based Longitudinal Study

Golam M. Khandaker, PhD; Rebecca M. Pearson, PhD; Stanley Zammit, PhD; Glyn Lewis, PhD; Peter B. Jones, PhD

JAMA Psychiatry. 2014;71(10):1121-1128. doi:10.1001/jamapsychiatry.2014.1332

Measured serum IL-6 at 9 years Assessed subjects for depression at 18 years (n=4500) After adjusting for confounders, those with raised IL-6 at 9 years more likely to be depressed at 18y (OR - 1.6, 95% CI - 1.1-2.1)

NUMBER OF THE OWNER OWNE

Evidence for inflammation in depression

Sources of inflammation in medically healthy individuals

Mechanistic pathways linking inflammation and mental illness

Activation of IDO pathway

Alters metabolism, production and transport of neurotransmitters

Effects on HPA Axis

Effects on neurotrophic/growth factors

Effect of inflammation on IDO pathway

Effect of inflammation on serotonin

Increase expression and activity of neuronal 5HTT

Induction of p38 mitogen-activated protein kinase (MAPK), both in vitro and in vivo

(Zhu et al., 2005)

Interact with genetic vulnerability influence 5-HT levels

Effect on dopamine - packaging/reuptake

Negatively affect the expression and function of VMAT2

◆ Preclinical evidence for ↑DAT function and expression

♦ ↑KA - reduces Glu transmission and ↓Glu-evoked DA release

Effect on glutamate

QUIN - directly activate NMDA receptor to induce release of Glu

❖ ↓astrocytic expression of Glu transporters/↑ release of Glutamate

Extrasynaptic NMDA receptors - \checkmark production of BDNF

Effects on neuropeptides and growth factors

Influence BDNF receptor (TrkB) phosphorylation, thereby further interfering with BDNF signaling

(Anacker et al., 2013; Cortese et al., 2011)

Translational implications

Translational implications

Research finding	Translational implications
↑ Levels of inflammatory markers in TRD	Can potentially identify treatment resistant sub-group
Some markers decrease with AD treatment whereas others do not	Can be used as markers of treatment prognosis
Machine learning algorithm approaches using longitudinal EMR data - predictive relationship between↑ inflammation and lifetime MDD	Specific inflammatory markers may predict first MDD onset
Interferon-γ-induced protein 10 predicted dysthymic disorder (Dysthymia > Depression > Controls)	MDD spectrum conditions may have specific immune signatures

Translational implications

Research finding	Translational implications
Higher CRP levels were associated with a better response to nortriptyline > escitalopram	Inflammatory biomarkers may be used to guide treatment response
Infliximab alleviated dep. symptoms in TRD compared to placebo - only in those with hsCRP >5 mg/L	Trials of anti-inflammatory agents need to enrich themselves for inflammatory sub-type of patients
Effect sizes for statistically significant findings/differences were small	Not clinically significant or immune disequilibrium occurs in a minority

Anti-inflammatory treatments for depression

Potential anti-inflammatory treatments for mental illness

♦ Why do we need new treatments for mental illness?
♦ High rates of treatment resistance across disorders
♦ Our relatively limited psychopharmacologic repertoire

RESEARCH PAPER

Efficacy and safety of anti-inflammatory agents for the treatment of major depressive disorder: a systematic review and meta-analysis of randomised controlled trials

Shuang Bai,¹ Wenliang Guo,² Yangyang Feng,¹ Hong Deng,¹ Gaigai Li,¹ Hao Nie,¹ Guangyu Guo,¹ Haihan Yu,¹ Yang Ma,¹ Jiahui Wang,¹ Shiling Chen,¹ Jie Jing,¹ Jingfei Yang,¹ Yingxin Tang,¹ Zhouping Tang ¹

Bai S, et al. J Neurol Neurosurg Psychiatry 2019;0:1–12. doi:10.1136/jnnp-2019-320912

Pooled analysis of 26 RCTs - >1600 participants NSAIDs/Omega-3FA/Statins/Minocycline/Modafanil/NAC

Evidence for monotherapy in depression

	Anti-inflam	nmatory ag	ents	Placebo Std. Mean Difference			Std. Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI Year	r IV, Random, 95% CI	
1.1.1 Monotherapy of an	nti-inflammat	ory agents								
Marangell 2003	-8.1	7.7	18	-5.8	8.6	17	3.4%	-0.28 [-0.94, 0.39] 2003		
Su 2008	-12.4	4.69	17	-7.7	4.42	16	3.2%	-1.01 [-1.74, -0.28] 2008	, <u> </u>	
Rees 2008	-11.8	4.96	13	-9.3	4.52	13	3.0%	-0.51 [-1.29, 0.27] 2008	· · · · · ·	
Freeman 2008	-6.04	4.8	28	-7.52	4.11	23	3.8%	0.32 [-0.23, 0.88] 2008	3	
Rondanelli 2010	-4.5	3.93	22	-0.8	4.94	24	3.6%	-0.81 [-1.41, -0.21] 2010		
Mischoulon EPA 2015	-10.34	4.8	60	-9.49	4.69	29	4.3%	-0.18 [-0.62, 0.27] 2015	;	
Mischoulon DHA 2015	-9.26	4.72	58	-9.49	4.69	30	4.3%	0.05 [-0.39, 0.49] 2015	5	
Rapaport DHA 2016	-9.61	4.07	51	-9.79	3.97	26	4.2%	0.04 [-0.43, 0.52] 2016	; –	
Rapaport EPA 2016	-10.14	4.11	52	-9.79	3.97	26	4.2%	-0.09 [-0.56, 0.39] 2016	· · ·	
Emaul-Rouchak 2010	-3.03	1.32	23	-1.05	2.12	20	3.0%	-1.00[-1.00, -0.44] 2010	·	
Subtotal (95% CI)			342			227	37.6%	-0.30 [-0.58, -0.02]		
Heterogeneity: Tau ² = 0.12; Chi ² = 22.30, df = 9 (P = 0.008); l ² = 60%										

Test for overall effect: Z = 2.14 (P = 0.03)

Evidence for adjunctive anti-inflammatory treatments in depression

1.1.2 Adjuctive anti-inflammatory agents

Subtotal (95% CI)			529			512	62.4%	-0.70 [-0.97, -0.43]		
Hussin 2017	18.3	46.4	10	0.2	46.4	10	2,29/	1.00 [1.02, 0.26]	2017	
Dean 2017	-15.2	9.21	36	-11.9	8.53	35	4.2%	-0.37 [-0.84, 0.10]	2017	
Majd 2015	-18.3	3.4	14	-15.8	5.2	9	2.7%	-0.58 [-1.43, 0.28]	2015	
Gougol 2015	-18.5	7.1	22	-13.68	5.89	22	3.6%	-0.73 [-1.34, -0.11]	2015	
Berk 2014	-5.8	7.96	108	-5.8	8.31	99	5.0%	0.00 [-0.27, 0.27]	2014	
Haghighi 2014	-13.7	3.65	30	-12.27	3.69	30	4.0%	-0.38 [-0.90, 0.13]	2014	
Ghanizadeh 2013	-12.84	6.36	31	-8.2	4.02	31	4.0%	-0.86 [-1.38, -0.34]	2013	
Sepanjnia 2012	-16.7	1.55	20	-13.4	1.55	20	3.0%	-2.09 [-2.87, -1.30]	2012	
Abbasi 2012	-13.4	3.88	20	-10.05	3.15	20	3.4%	-0.93 [-1.58, -0.27]	2012	
Abolfazli 2011	-14.04	2.49	22	-10.04	2.69	22	3.4%	-1.52 [-2.19, -0.84]	2011	
Bot 2010	-12.3	8.91	12	-14.8	7.63	12	2.9%	0.29 [-0.51, 1.10]	2010	
Mischoulon 2009	-7.7	7.9	16	-3	6.5	19	3.3%	-0.64 [-1.32, 0.04]	2009	
Akhondzadeh 2009	-13.2	4.26	20	-10.2	3.77	20	3.5%	-0.73 [-1.37, -0.09]	2009	
Carney 2009	-11.5	6.1	62	-10.1	6.06	60	4.7%	-0.23 [-0.58, 0.13]	2009	
Müller 2006	-17.5	6.17	10	-12.5	7.4	8	2.4%	-0.71 [-1.67, 0.26]	2006	
DeBattista 2003	-6.1	4.62	68	-5.57	5.73	67	4.7%	-0.10 [-0.44, 0.24]	2003	
Su 2003	-13.6	3.8	12	-6.4	3.6	10	2.2%	-1.87 [-2.90, -0.83]	2003	
Nemets 2002	-12.4	6.72	10	-1.6	7.35	10	2.3%	-1.47 [-2.48, -0.46]	2002	

Heterogeneity: Tau* = 0.23; Chi* = 66.25, df = 17 (P < 0.00001); I* = 74%

Test for overall effect: Z = 5.12 (P < 0.00001)

Evidence - anti-inflammatory therapies in depression

Sub-group analysis - NSAIDs/Minocycline/Statins and Omega-3 FA significant anti-depressant effects

Gastrointestinal AE's - different between groups - only for statins/NAC

Evidence - anti-inflammatory therapies in depression

Systematic Review / Meta-analysis

Efficacy of anti-inflammatory treatment on major depressive disorder or depressive symptoms: meta-analysis of clinical trials

> Acta Psychiatr Scand 2019: 139: 404–419 All rights reserved DOI: 10.1111/acps.13016

36 RCTs (N ~ 9000)

NSAIDs(n=13)/Cytokine

inhibitors(n=9)/**Statin**s(n=7)/**Minocycline**(n=3)/Pioglitazone(n=2)/**Glucocorticoids** (n=2) Pooled effects as monotherapy – SMD = 0.41 Pooled effects as add-on – SMD = 0.64 No increased risk for GI or CVS events Non-significant increased risk of infections

Intervention	Evidence	Comments
Celecoxib and other NSAIDs	 May be useful as a monotherapy Or in combination with antidepressant medication 	Patients with higher initial inflammation experienced greater benefit from celecoxib than those with lower inflammation

Intervention		Evidence	Comments
Cytokine inhibitors (e.g., infliximab)	•	Reduced depressive symptoms in people with psoriasis Lessened fatigue during cancer treatment Resolved MDD in Crohn's disease	Patients with high baseline CRP levels had substantially greater reductions in depressive symptoms than those with low CRP levels

Intervention	Evidence	Comments
Prebiotics and probiotics	2 Meta-analysis 10 trials (n=1349) Probiotics – NS – (d = -0.13) 34 trials Prebiotics – NS (d = -0.08) Probiotics – Sig (d = -0.24)	Larger ES noted for clinical/medical samples (d=-0.45, p<0.001)

Liu et al., Neurosci Behav Rev 2019; Ng et al., J Affect Dis 2018

Intervention	Evidence	Comments
Healthy diets (e.g., Mediterranean diet)	 Review of 6 RCT's 3 found fewer recurrences of depression 2 found higher BDNF levels (MeDi + nuts) 	 Few side effects Wide variability in dietary components Applicability to Indian culture Disadv – motivation
	A	Itun et al., Neurol Psy Brain Res 2019

Intervention	Evidence	Comments
Exercise	 23 RCT's (n=977) Vs no intervention (g=1.24) Vs psychotherapy (g=0.22) Vs anti-deps (g=0.08) As adjunct to anti- deps (g=0.50) 	Best used as an adjunct to anti-deps (g=0.50, sig trend) Advantages vs Disadvantages
		Kvam et al., J Affect Disord 2016

Intervention	Evidence	Comments
Integrative medicine Interventions – yoga/breathing /meditation	 May modulate stress immune response Positive ES vs placebo Comparable ES vs standard interventions Mixed evidence for add- on to A/D medication 	 Limited no of RCT's with lot of variability in results Risk of bias unclear

Potential new therapeutic targets

CBT - Can address multiple behaviors leading to inflammation and have lasting effects

(Su et al., 2014; Gazal et al., 2013)

- Lopresti AL (ANZJP, 2019)
 - →23 trials
 - →14 studies showed reduction in ≥1 marker, ↑ in 3 studies and no change in 6 studies
 - →Poorer treatment response in those with higher pre-morbid inflammation (n=3)

DY Patil Psychiatry Knowledge Series 01.10.2020

An integrated approach to practice

What can clinicians do? -An integrated approach to practice

Obtain a detailed history obesity/sedentary lifestyle/early life adversity/smoking/f/h of immune disorders/gluten sensitivity/IBD

Explore symptoms - omega-3 FA/Vit C/Vit E/FA

What can clinicians do? -An integrated approach to practice

Incorporate these into diagnostic formulation

Advice low cost non-pharmacological interventions

Manage co-morbid alcohol/smoking

What can clinicians do? -An integrated approach to practice

If non-response or inadequate response - CRP

Choose from evidence based options

Keep abreast of the emerging literature in the field of antiinflammatory therapeutics

Conclusion

Mounting evidence for inflammation in the pathogenesis of depression

Mechanistic links include monoamines, glutamate, neuropeptide, HPA axis and growth factors

Some promise noted in trials with anti-inflammatory agents but as trials get longer and more robust, efficacy is more modest

Field is very exciting - personalized medicine

Key question - Inflammation in whom?

Future needs

Efficacy and safety of drugs that have less off-target effects

Examine the extent of inflammatory change and relate it to changes in depressive symptoms

Defining a reliable biomarker signature - at-risk patients that may benefit from immune therapies

References

- Cortese GP, Barrientos RM, Maier SF, Patterson SL. Aging and a peripheral immune challenge interact to reduce mature brain-derived neurotrophic factor and activation of TrkB, PLCgamma1, and ERK in hippocampal synaptoneurosomes. Journal of Neuroscience. 2011; 31:4274-4279
- Felger JC, Lotrich FE. Inflammatory Cytokines in Depression: Neurobiological Mechanisms and Therapeutic ImplicationsNeuroscience. 2013; 246: 199-229
- Bauer ME, Teixeira AL. Inflammation in psychiatric disorders: what comes first? Ann. N.Y. Acad. Sci. 2018;1-11
- Kiecolt-Glaser JK, Derry HM, M.A, Fagundes CP. Inflammation: Depression Fans the Flames and Feasts on the Heat. Am J Psychiatry 2015;172:11
- Menon V, Ameen S. Immunoinflammatory Therapies in Psychiatry: Current Evidence Base. Indian J Psychol Med 2017 Nov-Dec;39(6):721-726
- Muthuramalingam A, Menon V, Rajkumar RP, Negi VS. Effect of Fluoxetine on Inflammatory Cytokines in Drug-Naive Major Depression: A Short-Term Prospective Study from South India. J Clin Psychopharmacol. 2016 Dec;36(6):726-728

References

- Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008; 9(1): 46-56
- Capuron L, Ravaud A, Miller AH, Dantzer R. Baseline mood and psychosocial characteristics of patients developing depressive symptoms during interleukin-2 and/or interferon-alpha cancer therapy. Brain Behav Immun. 2004; 18:205-213.
- Uher R, Tansey KE, Dew T, et al: An inflammatory biomarker as a differential predictor of outcome of depression treatment with escitalopram and nortriptyline. AmJ Psychiatry 2014; 171:1278-1286
- Felger JC, Cole SW, Pace TW, Hu F, Woolwine BJ, Doho GH, Raison CL, Miller AH. Molecular signatures of peripheral blood mononuclear cells during chronic interferon-alpha treatment: relationship with depression and fatigue. Psychol Med. 2012a; 42:1591-1603.
- Gazal M, Souza LD, Fucolo BA, et al: The impact of cognitive behavioral therapy on IL-6 levels in unmedicated women experiencing the first episode of depression: a pilot study. Psychiatry Res 2013; 209:742-745
- Miller AH, Raison CL: Are anti-inflammatory therapies viable treatments for psychiatric disorders? Where the rubber meets the road. JAMA Psychiatry 2015; 72:527-528

References

- Köhler O, Benros ME, Nordentoft M, et al: Effect of antiinflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry 2014; 71:1381-1391
- Molendijk ML, Bus BA, Spinhoven P, Penninx BW, Kenis G, Prickaerts J, Voshaar RC, Elzinga BM. Serum levels of brain-derived neurotrophic factor in major depressive disorder: state-trait issues, clinical features and pharmacological treatment. Mol Psychiatry. 2011; 16:1088-1095
- Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, Haroon E, Miller AH. A Randomized Controlled Trial of the Tumor Necrosis Factor Antagonist Infliximab for Treatment- Resistant Depression: The Role of Baseline Inflammatory Biomarkers. Arch Gen Psychiatry 2012:1-11.
- Lanquillon S, Krieg JC, Bening-Abu-Shach U, Vedder H. Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacology. 2000; 22:370-379.
- Frommberger UH, Bauer J, Haselbauer P, Fraulin A, Riemann D, Berger M. Interleukin-6-(IL-6) plasma levels in depression and schizophrenia: comparison between the acute state and after remission. Eur Arch Psychiatry Clin Neurosci. 1997; 247:228-233.
- Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R. Influence of life stress on depression: moderation by a polyorphism in the 5-HTT gene. Science. 2003; 301:386-389.

THANK YOU FOR A PATIENT LISTENING Contact: drvmenon@gmail.com Website: http://www.jipmer.puducherry.gov.in/department/ psychiatry/general-info