

Basic Science of Non-invasive Neuromodulation in Psychiatry

Nishant Goyal

Professor of Psychiatry

Centre for Child and Adolescent Psychiatry, Centre for Cognitive Neurosciences & fMRI Centre

Central Institute of Psychiatry, Ranchi

Sincere acknowledgements

- Dr Rashmin Cholera
- Dept. of Psychiatry, School of Medicine
- Team CCN-CRC

No conflicts of interest

Clinical Research Centre for Neuromodulation in Psychiatry: A Multi-Centre Initiative to Advance Interventional Psychiatry in India

Opportunity to get training in advanced neuromodulation techniques

Potential for pursuing PhD in the area of neuromodulation in psychiatry

For more information, please e-mail:

nishantgoyal.cip@gov.in

Psychopharmacology: What now?

BJPsych

The British Journal of Psychiatry (2011) 198, 333–335. doi: 10.1192/bjp.bp.110.086207

Editorial

Has psychopharmacology got a future?

Philip J. Cowen

Summary

Fifty years ago pharmacological discoveries transformed psychiatry but progress since then has been relatively slow and there is unease about the role of industry. Despite this, the possibilities of pharmacological treatment have improved in recent years but exploiting developments for the benefit of patients requires psychotherapeutic skill as well as a high level of scientific knowledge.

Declaration of interest

P.J.C. has been a paid member of boards that have advised different drug companies on the development of antidepressant drugs. In the past 3 years these companies have included Eli Lilly, Lundbeck and Servier. P.J.C. has also received remuneration for scientific advice given to legal representatives of GlaxoSmithKline.

Psychopharmacology: Some hard truths...

- Most prescribing of psychotropic drugs occurs outside specialist psychiatric practice
- Between the blandishments of industry and the antipathy of critics, psychopharmacology has made marginal incremental progress
- Few psychotropics in the pipeline...recent ones not that effective as claimed in trails
- Psychopharmacology may have a golden past, but does it have a future?

• Technological and Scientific Advances Shaping Practice

- Genomics, proteomics, epigenetics, neuroimmunology,
 neuropsychology
- Advanced neuroimaging and studies of brain circuitry
- Supercomputing-based advanced artificial intelligence (AI),
 Robotics and back engineering
- Big data mining and management
- Smart psychotherapy
- New Areas of Psychiatric Specialization
- Precision Psychiatry/Neuromodulation: Customised
 Psychiatry

What is Neuromodulation?

• Neuromodulation (or brain stimulation) is defined as a field of science, medicine, and bioengineering that encompasses non-implantable implantable and technologies, electrical or chemical, for the purpose of improving quality of life and functioning of humans, by the international neuromodulation society

Success Story of NIBS/Neuromodulation

Read the full article online: http://bit.ly/BMJstim

© 2019 BMJ Publishing group Ltd.

What Neuromodulation is not....

Basic Assumptions

- Underlying premise of neuromodulation is that the brain is an electrochemical organ that can be modulated by pharmacotherapy or devise-based (ECT / TMS) approaches or their combination
- Explosion of new techniques for electrically stimulating the brain, primarily focally
- New tools are changing neuroscience research and neuropsychiatric therapies
- They validate and inform us about functional neuroanatomy

The brain is a complex, *electrochemical network*

The brain is a complex, *electrochemical network*

The brain is a complex, *electrochemical network*

Interventional Psychiatry: Treatments

Interventional Psychiatry: Treatments

Current State of Neuromodulation

- Nearly a dozen forms of brain stimulation are in development or currently US FDA approved for neuropsychiatric indications
- **3 Journals** dedicated exclusively to brain stimulation
- Fortunately, leaders in psychiatric research, clinical practice, and education have recognized the **discrepancy between our field's direction and our current training schema**
- Traditional training curricula offer informal, inconsistent, and limited training opportunities in neurotechnologies such as neuromodulation and diagnostic modalities

ECT

- ECT is the father of the brain stimulation
- Long way after Cerletti & Bini-more than 80 years
- Modern ECT: unilateral ultra-brief pulses-pulses are even briefer
- ECT still carries risks and has cognitive side effects

Refining the Electrical Stimulus

- Titrating and dosing in the current domain
- Unidirectional stimulation

Constant Current, Bidirectional, Brief or Ultrabrief, Rectangular Pulse Stimulation

Train Duration (s)

Unidirectional Stimulation (Anode, Cathode) as in FEAST

Focal Electrically Administered Seizure Therapy

Functional neuroimaging studies suggest a role of cortical governance over limbic activity

Transcranial Magnetic Stimulation

Depression

Holy Grail

Focal

Noninvasive Nonconvulsive Ferromagnet Magnetic Field Induced Electric Field Limbic System

stimulate the prefrontal cortex to

How do ECT and TMS differ?

	ECT	TMS
Direction of induced current	Radial	Tangential
	+	
Current reaches deep structures	Yes	No
Anesthesia Required	Yes	No
Seizure induced	Yes	No

Funny Pictures

Faraday, 1831

d'Arsonval(1896/1911)

Stevens, 1911

Thompson, 1910

Modern Stimulator

Barker, 1984

Fig. 1. Action potential (surface electrodes) in forearm flexor muscles, after a magnetic stimulus to the opposite motor area.

Physics of TMS: Electromagnetic induction

Fitzgerald, 2018: https://psychscenehub.com/

Mechanism of Action

• Electrical pulses of

- sufficient strength,
- short enough duration and
- rapidly changing
- Rapidly changing magnetic pulses penetrate scalp and skull to reach the brain
- These pulses induce a **secondary ionic current** in the brain leading to **neuronal depolarization**

Mechanism of Action - TMS

Depolarization of neurons in the DLPFC causes local neurotransmitter release

> Dorsolateral prefrontal cortex

> > Anterior cingulate cortex

Kito (2008) J Neuropsychiatry Clin Neuro

Depolarization of pyramidal neurons in the DLPFC also causes neurotransmitter release in deeper brain neurons

Activation of deeper brain neurons then exerts secondary effects on remaining portions of targeted brain circuits These effects are associated with improvements in target symptoms

Types of coils: Quest for depth

Double Cone

Spatial resolution: Coil Shape

- Field has "trough shape"
- Rather unfocal

 Field peaks underneath the intersection of the two wire loops

Geometry of coil determines the focality of magnetic field and of the induced current - hence also of the targeted brain area

Stimulation Depth

1.4

V/cm

Cannot stimulate medial or sub-cortical areas
Spread of Activation

Brain Connectivity

TMS

- Takes advantage of the natural brain circuitry
- Dorsolateral prefrontal cortex: DLPFC –(lateral aspect of the middle frontal gyrus)
- Interconnected with limbic structures that play a role in mood modulation & depression

Effect neural activity at the site of stimulation as well as distal regions that are interconnected with the DLPFC – implicated in mood, motivation and arousal

Mechanism of rTMS

Stimulation is Focal but Action is not local

SOUND OF CLICK: ONE PULSE

Conventional rTMS

BASICS

Frequency

• High frequency typically given in bursts (trains) interrupted by pauses (Inter-train interval, ITI) to prevent seizure induction.

Stimulus parameters- UI

Total Number of Pulses 3000 Standard $\leftarrow 40 \rightarrow$ Burst $30^{\times} \qquad \qquad$
Standard $\leftarrow 40 \rightarrow$ Burst 30^{\times} $\downarrow \downarrow \downarrow$
Charge DFF Duration 0ms

- Frequency- 10.0Hz
- Duration- 4.0s
- Number of Pulses- 40
- Wait time- 11 secs
- Number of Trains- 3000/40 = 75 trains
- 15s (trains+ ITT)
- 75*15= 1125 secs
 - = 18.75 mins (18 mins 45 secs)

Patterned rTMS

More efficient protocols, which can produce consistent aftereffects with fewer stimuli or lower stimulus intensity were needed

Patterned rTMS protocols introduced:

theta burstpaired-pulsestimulation (TBS)rTMS (pp rTMS)

quadri-pulse stimulation (QPS)

Patterned TMS

Theta burst stimulation (TBS): Shorter sessions and possibly more robust plasticity as compared to conventional rTMS

- Short bursts of 50 Hz rTMS given at 5 Hz
- **cTBS** continuous; inhibitory to underlying cortex
- **iTBS** intermittent; excitatory to underlying cortex

Conventional rTMS

Patterned rTMS

Stimulus parameters- UI

Power	Frequency	Number of Pulses	Number of Bursts	Cycle Time	Number of Cycles
30×	50 Hz	3	10	[10.0s]	20
	Burst Frequency		Total Number	of Pulses	
S s	tandard	← 10 in 2.0 3 @ 50Hz	\$ →		
•	Burst 30%			Wait Time - 8.0s	+
		← 5Hz →	10.0s		
		Charge Delay	OFF Dura	tion 0	ms

iTBS

- Frequency- 50.0Hz
- Burst Frequency- 5Hz
- Number of pulses- 3
- Number of Bursts- 10
- Cycle time- 10.0s (Wait time 8.0s)
- Number of Cycles- 20 3*10*20= 600 pulses
- Total time= 200 seconds
- 3 mins 9 s

Typical rTMS parameters (Clinical setting)

rTMS method	Pattern	Pulse mode	Pulses per burst	Frequency (Hz)	Total trains	Pulses per train	Inter-train intervals (seconds)	Pulses per session	Total time per session (minutes)
HF		Single pulse	NA	≥ 10	60	50	25	3,000	30
LF	+1s→	Single pulse	NA	≤ 1	1	1,200	0	1,200	20
iTBS	+8s→ +2s+	Burst	3 (at 50 Hz)	5	20-30	30	8	600- <mark>9</mark> 00	4-7
cTBS		Burst	3 (at 50 Hz)	5	1	600-900	0	600-900	2-3

cTBS = continuous theta-burst stimulation; HF = high frequency; iTBS = intermittent theta-burst stimulation; LF = low frequency; NA = not applicable; rTMS = repetitive transcranial magnetic stimulation.

Area of stimulation

- Dorsolateral prefrontal cortex
- Supplementary Motor area
- Superior frontal gyrus
- Temporo-parietal junction
- Motor cortex
- Occipital cortex
- Cerebellum

Motor cortex

DLPFC

TPC

SMA- OCD

BRIEF RESEARCH COMMUNICATION

Augmentation effect of repetitive transcranial magnetic stimulation over the supplementary motor cortex in treatment refractory patients with obsessive compulsive disorder

Nand Kumar, R. K. Chadda Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India

OFC-OCD

Psychiatry Research 298 (2021) 113784

Check for

Efficacy of intensive orbitofrontal continuous Theta Burst Stimulation (iOFcTBS) in Obsessive Compulsive Disorder: A Randomized Placebo **Controlled Study**

Parth Dutta^a, Mohan Dhyani^a, Shobit Garg^{a,*}, Sai Krishna Tikka^b, Sumit Khattri^a, Sumit Mehta^a, Jyoti Mishra^c

OFC- OCD

Psychiatry Research 243 (2016) 413-420

(CrossMark

The efficacy of cerebellar vermal deep high frequency (theta range) repetitive transcranial magnetic stimulation (rTMS) in schizophrenia: A randomized rater blind-sham controlled study

Shobit Garg^a, Vinod Kumar Sinha^b, Sai Krishna Tikka^{b,*}, Preeti Mishra^a, Nishant Goyal^b

*Department of Psychiatry, Shri Guru Ram Rai Institute of Medical & Health Sciences, Dehradun, Uttarakhand, India
b KS Mani Center for Cognitive Neurosciences and Department of Psychiatry, Central Institute of Psychiatry, Kanke, Ranchi, Jharkhand 834006, India

Cerebellum- SCZ, OCD

Stimulus Delivery- DLPFC

DLPFC is typically defined by areas 9 and 46 in the Brodmann classification system

How to identify?

- standard '5-cm method' for coil localization (crude method)
- F3 EEG point (International 10-20 system) is known to relate to DLPFC and is likely to be more anterior than a 5-cm localized treatment
- Beam method
- MRI based neuronavigation

Accelerated TMS

• Disadvantages of conventional rTMS

 Standard rTMS not useful for actively suicidal patients due to delayed time-toresponse

 Daily administration schedule over several weeks limits the feasibility for patients

aTMS

- Accelerated TMS (aTMS) protocols with both rTMS and TBS increasingly under study to address these limitations
- Rationale:
 - 1. Equal or greater effects are induced by the repeated application of stimulation within a short interval time
 - 2. Effects induced within a densely scheduled session have durable efficacy
- Accelerated response to treatment is another theoretical advantage of aTMS

SAINT

Cole et al. have developed an accelerated, high dose, restingstate functional connectivity MRI (fcMRI) guided iTBS protocol for treatment resistant depression [Stanford Accelerated Intelligent Neuromodulation Therapy]

The protocol involves 5 consecutive days of 10 iTBS sessions per day (1800 pulses per session, 50-minute intersession intervals) delivered to specific region of left DLPFC most anticorrelated with subgenual Anterior Cingulate Cortex (sgACC), which was accurately targeted using fcMRI scans

Found to be safe and well-tolerated in 21 MDD patients, 19 of whom achieved remission

SAINT Protocol (STANFORD ACCELERATED INTELLIGENT NEUROMODULATION THERAPY FOR TREATMENT-RESISTANT DEPRESSION)

Day 1	Day 2	Day 3	Day 4	Day 5
iTBS 1800				
50 minute ISI				

Dose

CNS Spectrums

www.cambridge.org/cns

Original Research

Cite this article: Mukherjee A, Kumre PK, Goyal N, and Khanra S (2022). Adjunctive neuronavigated accelerated continuous thetaburst stimulation in obsessive-compulsive disorder: a randomized sham-controlled study. CNS Spectrums https://doi.org/10.1017/S1092852922000980

Received: 20 May 2022 Accepted: 18 August 2022

Key words:

OCD; Obsessive Compulsive disorder; TBS; Theta burst; Neuronavigaton; Accelerated

Author for correspondence:

*Sourav Khanra Email: psyksk.cip@gmail.com

Adjunctive neuronavigated accelerated continuous theta-burst stimulation in obsessive-compulsive disorder: a randomized sham-controlled study

Aniruddha Mukherjee¹, Pramod Kumar Kumre², Nishant Goyal¹ and Sourav Khanra^{3*}

¹Centre for Cognitive Neuroscience, Central Institute of Psychiatry, Ranchi, India, ²Department of Psychiatry, Central Institute of Psychiatry, Ranchi, India and ³Centre for Addiction Psychiatry, Central Institute of Psychiatry, Ranchi, India

Abstract

Background. Approximately 40% of patients treated for obsessive-compulsive disorder (OCD) do not respond to standard and second-line augmentation treatments leading to the exploration of alternate biological treatments. Continuous theta burst stimulation (cTBS) is a form of repetitive transcranial magnetic stimulation inducing more rapid and longer-lasting effects on synaptic plasticity than the latter. To the best of our knowledge, only one recent study and a case report investigated the effect of cTBS at the supplementary motor area (SMA) in OCD.

Objective. This study aimed to examine the effect of accelerated robotized neuronavigated cTBS over SMA in patients with OCD.

Methods. A total of 32 patients with OCD were enrolled and randomized into active and sham cTBS groups. For active cTBS stimulation, an accelerated protocol was used. Bursts of three stimuli at 50 Hz, at 80% of MT, repeated at 5 Hz were used. Daily 2 sessions of 900 pulses each, for a total of 30 sessions over 3 wk (weekly 10 sessions), were given. Yale–Brown Obsessive-Compulsive Rating Scale (YBOCS), Clinical Global Impressions scale (CGI), Hamilton Depression Rating Scale (HAM-D), and Hamilton Anxiety Rating Scale (HAM-A) were administered at baseline and at end of weeks 3 and 8.

Results. A total of 26 patients completed the study. Active cTBS group showed significant group × time effect in YBOCS obsession (P < .001, $\eta^2 = 0.288$), compulsion (P = .004, $\eta^2 = 0.207$), YBOCS total (P < .001, $\eta^2 = 0.288$), CGI-S (P = .010, $\eta^2 = 0.248$), CGI-C (P = .010, $\eta^2 = 0.248$), HAM-D (P = .014, $\eta^2 = 0.224$) than sham cTBS group.

Conclusions. Findings from our study suggest that adjunctive accelerated cTBS significantly improves psychopathology, severity of illness, and depression among patients with OCD. Future studies with larger sample sizes will add to our knowledge.

rTMS

Integrated 100 Hz rTMS System at CIP

Robotized TMS

FIGURE 1. Showing localitation of right interior panetal lobule of standard Millian geneed for neuronavigatio

Neuronavigated rTMS

Deep TMS

	TRADITIONAL rTMS	DEEP rTMS or DEEP TMS			
COIL DESIGN	Figure-8 coil	H1-coil Bilateral PFC & DLPFC	H7-coil Medial PFC & ACC	H4-coil Bilateral Insula and PFC	
DEPTH	0.7cm subdural	1.8cm subdural 2.5x deeper	3cm subdural 4x deeper	1.5cm subdural 2.1x deeper	
BREADTH	3cm ³ volume	18cm ³ volume millions of more neurons	40.3cm ³ volume millions of more neurons	15.2cm ³ volume millions of more neurons	
INDICATION	MDD	MDD	OCD	Smoking Cessation	
H COIL FOR DEEP TMS

OF

WHEE

9

ж Д. Д

1.1.1

Studies from CIP

CNS Spectrums

Brain activation alterations with adjunctive deep transcranial magnetic stimulation in obsessive-compulsive disorder: an fMRI study

Published online by Cambridge University Press: 10 May 2022

Sachin Reddy 偃	, Umesh Shreekantiah, Nishant Goyal and Chandramouli Roy	Hide author details 🔿
Sachin Reddy*	Affiliation: Department of Psychiatry, Central Institute of Psych	iat <mark>ry, R</mark> anchi, India
Umesh Shreekantiah	Affiliation: Department of Psychiatry, Central Institute of Psych	iatry, <mark>R</mark> anchi, India
Nishant Goyal	Affiliation: Department of Psychiatry, Central Institute of Psych	iatry <mark>, Ran</mark> chi, India
Chandram <mark>o</mark> uli Roy	Affiliation: Department of Psychiatry, Central Institute of Psych	iatry, <mark>Ra</mark> nchi, India

New Innovations

Recent studies have been published examining newer forms of patterned TMS

In a study aiming to measure changes in cortico-spinal excitability, Jung et al. introduced a new protocol **combining QPS and TBS** (Jung et al., 2016)

HDtDCS priming of iTBS is studied in depression

Evidences for TMS

Available positive evidence/Indications

Depression (unipolar, bipolar treatment resistant depression)

Peripartum depression

Post-stroke depression, depression associated with Parkinson's disease

Generalized Anxiety Disorder

Obsessive Compulsive Disorder

Post Traumatic Stress Disorder

Schizophrenia (negative symptoms and resistant auditory hallucinations)

Nicotine use disorder (smoking cessation)

Alzheimer's Dementia

Insomnia

Migraine Fibromyalgia, Tinnitus

Insufficient or negative shamcontrolled evidence

Suicidality

Maintenance treatment of depression

Mania/ Bipolar mania

Panic disorder

Tourette disorder

Positive symptoms (except resistant auditory hallucinations) of schizophrenia

Treatment resistant schizophrenia

Substance use disorders except smoked nicotine

ADHD

Autism Spectrum Disorder (Lack of evidence for uniformity in rTMS form and target location)

Specific learning disorder; Intellectual disability

Tension type Headache PNES (Dissociative disorders)

Disorder/Condition	Mode	Target	Recommendation	FD
Depression Acute/Unipolar	HF	Left DLPFC	Strong	Yes
	LF	Right DLPFC	Moderate	
	Bilateral (HF to Left an	Low		
	iTBS Left DLPFC Bilateral (iTBS to Left and cTBS to Right DLPFC)			
	Deep 'H1' HF Left DLPFC			
	Priming (HF followed by LF)	Right DLPFC	-	
Bipolar depression	HF	Left DLPFC	Moderate	Yes
Freatment resistant	HF	Left DLPFC	Moderate	Yes
depression	LF	Right DLPFC	Low	Yes
Peripartum depression	HF	Left DLPFC	Moderate	No
	LF	Right DLPFC	Low	
Post-stroke depression	HF	Left DLPFC	Moderate	No
Depression in Parkinson's Disease	HF	Left DLPFC	Moderate	No
Generalized Anxiety Disorder	LF	Right DLPFC	Moderate	No
Obsessive Compulsive Disorder	LF	Right DLPFC	Moderate	Yes
	HF	Bilateral DLPFC	Low	
	LF	SMA	Low	No
Post-Traumatic Stress Disorder	HF	Right DLPFC	Moderate	No
	LF	Right DLPFC		No
Schizophrenia-Auditory Hallucinations	LF	Left TPC (TPJ+STG)	Low	No
Schizophrenia-Negative symptoms	HF	Left DLPFC	Moderate	No
Nicotine Use Disorder Smoking Cessation)	HF	Left DLPFC	Low	No
Alzheimer's Dementia	HF	Bilateral DLPFC	Moderate	No
	HF	Left DLPFC		No
	LF	Right DLPFC	Low	No
nsomnia	LF	Right DLPFC	Moderate	
Vigraine	HF	Primary Motor Cortex	Moderate	
ibromyalgia	HF	Primary Motor Cortex	Low	
Chronic Tinnitus	LF	Primary Auditory Cortex	Low	

temporal gyrus; FDA=Food and Drug Administration

Left DLPFC	Right DLPFC	LMC	LAC
Depression	GAD/OCD/PTSD	Migraine	Chronic Tinnitus
Negative symptoms of schizophrenia	Insomnia	Fibromyalgia	
Nicotine smoking			
Alzheimer's dementia			

Excitatory (HF/iTBS)	Inhibitory (LF/cTBS)	
Depression	GAD/OCD/PTSD	
Negative symptoms of schizophrenia	Auditory Hallucinations	
Nicotine smoking	Insomnia	
Alzheimer's dementia	Chronic Tinnitus	
Migraine		
Fibromyalgia		

FDA Approved dTMS Treatments

- In addition to numerous published, double-blind, randomized controlled trials validating the efficacy of Deep TMS for depression, **clinical data of over 1,000 patients in real practice settings has shown compelling results**.
- Among patients who completed 30 sessions, **approximately 1 in 2 achieved** remission and 3 in 4 achieved response.

Standard 20-minute sessions or Intermittent Theta Burst (iTBS) 3-min sessions with 20 sessions across 4 weeks, followed by 10-16 sessions across additional 5-8 weeks

Complementing a large scale, double-blind, multicenter randomized controlled trial which demonstrated strong response rates, greater than 1 in 2 patients who completed 29 sessions in real clinical practice achieved sustained response.

Standard 18-minute sessions with 29 sessions across 6 weeks

FDA Approved dTMS Treatments (Cont.)

Direct Current Stimulation

rTMS vs tDCS

 Compared to repetitive transcranial magnetic stimulation (rTMS), tDCS is

- Relatively cheaper
- Easier to use
- More **portable**
- Less adverse effects

History: "Torpedo" effect

- Natural electrical phenomena fascinated humans since antiquity
- Electrical discharges produced by the fish were highly appreciated among ancient physicians
 - Hippocrates, Scribonius Largus and Galen prescribed for headache, gout and prolapsed

anus

Neuromodulation platforms vary in how energy is delivered to what target

Deep Brain Stimulation (DBS)

Spinal Cord Stimulation (SCS)

Transcranial Magnetic Stimulation (TMS)

Electroconvulsive Therapy Transcranial Direct Current Stimulation (tDCS)

Transcranial Electrical

Stimulation (tES)

Neuromodulation platforms vary in how energy is delivered to what target

Deep Brain Stimulation (DBS)

Spinal Cord Stimulation (SCS)

Transcranial Magnetic Stimulation (TMS)

Electroconvulsive Therapy Transcranial Electrical Stimulation (tES)

Transcranial Direct Current Stimulation (tDCS)

Wearable

What is tES?

All forms of application of electrical currents to the brain non-invasively using (at least one) electrodes on the head

Transcranial stimulators since 1990

Guleyupoglu B, Schestatsky P, Edwards D, Fregni F, Bikson M. Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. J Neurosci Methods. 2013 Oct 15;219(2):297-311.

Commonly used Modern tES

Krause MR, Vieira PG, Pack CC (2023) Transcranial electrical stimulation: How can a simple conductor orchestrate complex brain activity?. PLOS Biology 21(1): e3001973.

Transcranial Direct Current Stimulation (tDCS) is a wearable brain stimulator applying Direct Current (no pulses)

(Probably) most investigated interventional neurotechnology

tDCS (transcranial Direct Current Stimulation)

Cathode (-) Electrode

Anode (+) Electrode

2 mA

20-minute session

"Anodal" / "Cathodal" refer to proximity of target

How do we do it ?

- Size, position, and current applied to electrodes
- Example: 5x5 cm² electrodes, C3 Anode, SO Cathode, 2 mA for 20 minutes

Contralateral Forehead:

PreMotor:

Occipital:

Motor: PostMotor: AF8

F1

C3 CP5

P7

Peterchev, Bikson et. al. *Brain Stim* 2012

Mechanism: tDCS

- Current passed between ANODE(+) and CATHODE(-)
- DC CURRENT FLOW across cortex.
- Current is INWARD under ANODE and OUTWARD under CATHODE

MRI derived computational model

Current flow outward inward

Radman et al. *Brain Stim.* 2009

Brain Stim. 2009

Decreased Excitability / Plasticity

Central assumption: Inward/Outward current flow produces Excitation/Inhibition

Then, classic tDCS design:

- "Active" electrode placed over the target and polarity selected to Excite (Anode) or Inhibit (Cathode)
- "Return" ("reference") electrode placed somewhere else, and ignored

HD tDCS

Conventional tDCS vs HD-tDCS

Polarity of the central HD electrode determines the dominant polarity of stimulation

4*1 RING ARRANGEMENT

tDCS Recommendations

Table 1: tDCS indications and precautions

Indications

Precautions

1. Major depressive disorder 2. Persistent auditory hallucinations in schizophrenia. Possibly for positive and negative symptoms.

3. Craving in alcohol dependance and tobacco smoking: Relapse prevention

4. Obsessive-compulsive disorder

5. Mild cognitive impairment and dementia

a	. St	rucn	ural n	ead	шj	ury	
	-	-	-			10	

- b. Epilepsy in patient/family
- c. Scalp injury/skin lesions
- d. Implanted medical devices
- e. Foreign body in head/eyes
- f. Past history of adversities
- with tDCS/rTMS

Table 5: tDCS protocols for psychiatric disorders with promising evidence from RCTs								
Diagnosis	Anode	Cathode	Duration	Sessions				
Schizophrenia	Left DLPFC	Left TPJ	20 min	2 per day × 5 days				
OCD*	Pre SMA	Right supraorbital	20 min	2 per day \times 5 days				
Craving (substance-use disorder)	Right DLPFC	Left DLPFC	20 min	1 per day \times 5 days				
Depression	Left DLPFC	Right DLPFC	30 min	1 per day × 10 days^				
Dementia/MCI ^{\$}	Left DLPFC	Right supraorbital	20 min	1 per day × 5 days				

*In OCD three types of montages: SMA/Pre-SMA anode, SMA/Pre-SMA cathode, and right cerebellar anode are found to be effective. ^20-30 days of stimulation are attempted in a few large RCT. In dementia, one RCT has used 10 days daily sessions every month for 8 months. OCD: Obsessive compulsive disorder; SUD: Substance use disorder; DLPFC: Dorsolateral prefrontal cortex; SMA: Supplementary motor area; TPJ: Temporoparietal junction; MCI: Mild cognitive impairment

Hybrid Stimulation

European Journal of Neuroscience

European Journal of Neuroscience, Vol. 43, pp. 572-579, 2016

doi:10.1111/ejn.13142

NEUROSYSTEMS

Combined transcranial alternating current stimulation and continuous theta burst stimulation: a novel approach for neuroplasticity induction

Mitchell R. Goldsworthy,¹ Ann-Maree Vallence,^{1,2} Ruiting Yang,¹ Julia B. Pitcher¹ and Michael C. Ridding¹

ORIGINAL STUDY

Transcranial Direct Current Stimulation Priming of Therapeutic Repetitive Transcranial Magnetic Stimulation

A Pilot Study

Colleen Loo, MBBS, FRANZCP, MD, *†‡ Donel Martin, BSocSc (Hons), PhD, *† Melissa Pigot, BPsych (Hons), *† Patrick Arul-Anandam,* Philip Mitchell, MBBS, MD, FRANZCP, FRCPsych, *† and Perminder Sachdev, MD, PhD, FRANZCP,*§

Other emerging or experimental methods

- Deep Brain Stimulation (DBS)
- Transcranial Electrical Stimulation (TENS)
- Transcranial Alternating Current Stimulation (tACS)
- Random Noise Stimulation
- Transcranial Laser Stimulation using Functional Infrared Spectroscopy
- External Trigeminal Nerve Stimulation

What Future Beholds??

Tele-tECS

Tele-tECS

Ethics of Brain Stimulation

Although the risk is small, it is always present, we have to see:

- How can you **minimize risk** & discomfort?
- What is the **minimal stimulation** necessary?
- Is the TMS information **clear and consent informed**?
- Are subjects *always* screened?
- Is the practitioner safety **trained**?
- Are **emergency procedures** clear & in place?

Safety

- Heating
- Magnetic field exposure
- Hearing
- Metal implants
- Seizures

Adverse effects

- Most serious one is **seizure**
- Common side effects are
 - Scalp tenderness
 - Facial twitching
 - Acute mood changes
 - Neck pain, syncope, nausea, dizziness, erythema, sleepiness .. Short lasting and rarely require symptomatic management
 - Burning of the scalp

Precision Neuromodulation...

Geodesic Photogrammetry System (GPS)

Individual Head Model via FEM

Individual GTEN Planning

Conclusion

- The subspecialty of "interventional psychiatry" has been proposed
- Need for **formal recognition** of interventional psychiatry as a subspecialty
- Need for **operationalized training programs** in this rapidly emerging field
- The cultivation of a properly trained cohort of interventional psychiatrists will better meet the challenges of treatment-resistant psychiatric illness
- Safe and ethical practice, while facilitating a more informed development and integration of novel neuromodulation techniques

Thank You for your kind attention!!!

K S Mani Centre for Cognitive Neurosciences Central Institute of Psychiatry, Ranchi-834006

Contact: +91-651-2451115 (Ext: 249), +91-6512450823 (Fax), +91-9431171162 Email: <u>nishantgoyal.cip@gov.in</u>, <u>psynishant@gmail.com</u>

PC: Dr. Umesh S.